Intelligent Variable Speed pumps
Armstrong’s Design Envelope pumps are a complete solution for heating and cooling systems. The integration of a perfectly matched Vertical In-Line pump, motor, and Intelligent Variable Speed controller creates an innovative, high-value pumping solution.

Rising energy costs and sustainability governance are driving the development of new technologies to improve the performance of buildings. Armstrong answers the challenge with unparalleled pumping efficiency and performance.
The Design Envelope control is available for Armstrong’s Series 4300 and 4380 Vertical In-Line pumps, Series 4302 and 4382 dualARM pumps and Series 4312 and 4392 Twin pumps. These solutions are available with integrated controller or in a stand-alone configuration (controller mounted separately). Single phase available to 7.5hp / 5.5kW

Design Envelope pumps reduce pumping costs through variable speed, demand-based operation — consuming only the energy required, based on current system demand.

Design Envelope pumps use a combination of optimized impeller size and speed control for energy efficient operation within a given performance envelope. The performance envelopes are mapped for the best pump efficiency at 50% of the design flow rate, where variable flow systems operate most often. This ensures a building’s hydronic pumping system consumes as little energy as possible. It also ensures that the installation meets ASHRAE 90.1 guidelines requiring 70% energy savings at 50% of peak load.
ENERGY SAVINGS

Armstrong Design Envelope variable speed technology fundamentally changes the operation of a pump within the larger HVAC system. The variable speed intelligence embedded in the Armstrong Design Envelope controller adjusts the speed of the pump to meet the immediate load on the HVAC system. This results in the pump responding instantaneously to the system load and drawing only the power required to meet that load.

The reduction in power draw and the resulting savings in energy costs can be dramatic.
INSTALLATION COST SAVINGS

VERTICAL IN-LINE

Suction Guides and Flo-Trex valves cut your costs by reducing the requirement for pipe and fittings.

Contents required

• Flex connectors
• Inertia base
• Remote sensor

Labour requirements

• Grouting
• Shaft realignment
• Wiring to vfd
• Mounting and wiring of remote sensor

End suction base mounted installation with traditional piping.

Design Envelope Sensorless split-coupled vrl installation with Suction Guide and Flo-Trex valve.

Everything included

• Elegant space-saving design
• All-in-one pump and vfd solution
• Perfectly matched pump-motor-control combination
• No mounting of vfd to wall
• No re-alignment of shaft and coupling
• No flexible piping connectors
• No inertia base or grouting

1.00 INSTALLATION COST* 2.18

* Costs are normalized so no units are shown. For further detail, see Armstrong Value Proposition sheet (doc. #43.135).
In a chilled water system, a building's temperature controls are connected to control valves that manage the flow rate to the cooling coils (load). As the control valves open for more cooling, the differential pressure across the valve decreases. The ivs controller reacts to this change by increasing the pump speed to maintain the pressure setpoint. If the control valves close to reduce the cooling output, the differential pressure across the valve increases, and the ivs controller reduces the pump speed to maintain the pressure setpoint.

Equipped with the Sensorless design feature, Armstrong ivs pumps do not require an external sensor to monitor and control the HVAC load.
Equipped with the ivs Sensorless feature, a pump’s performance characteristic curve (power draw and RPM) and operating curve are pre-programmed into the controller. During operation, the controller monitors the power and speed of the pump and establishes the hydraulic performance and position of the pump’s head-flow condition relative to the system requirements. As the building’s control valves open or close to regulate flow to the cooling coils and maintain building occupant comfort, the ivs Sensorless controller automatically adjusts the pump speed to match the required system pressure requirement at the current flow.
With Armstrong Design Envelope technology the increased range of operating performance also reduces the risk of underperformance in the HVAC system. As occupant load or building surroundings change, the building load will change as well. A Design Envelope pump will still operate at high efficiency levels and will provide the exact pumping performance that supports the HVAC system and keeps costs at a minimum.

Armstrong Design Envelope provides building owners with the necessary adaptability to changes that can occur during a building’s operating life. Typically, a building’s load can shift because:

- Changes to building occupancy
- Changes to the building design
- Changes to shade conditions caused by modifications to the building’s surroundings
In ACE-online, performance envelopes and related pumping equipment can be selected easily by moving the cursor across the chart. Visit the live tool at aceonline.armlink.com.

The combined family of Design Envelopes accommodate a wide range of performance conditions.
BENEFITS

BUILDING OWNERS

- Lowest lifecycle costs
- Reduced energy consumption leads to substantial operating savings
- Green building incentives and rebates available in most regions
- Demand-based variable speed leads to improved occupant comfort
- Selection methodology provides future proofing against changing building loads
- Selection methodology prevents oversizing of equipment

DESIGN ENGINEERS

- Broad range of performance leads to reduced iterations of pump selection
- Energy-saving solution reduces HVAC operating costs
- Contributes to LEED certification
- Improved pumping efficiency and control leads to reduced carbon footprint
- Fewer components and reduced wiring means simpler HVAC system drawings
- IVS Sensorless technology means fewer components to select

CONTRACTORS

- Less floor space required
- Fewer peripheral components
- Reduced costs for pipe and pipe installation
- No requirement for concrete pad
- Fewer components to install
- Faster installation and commissioning
DESIGN ENVELOPE PUMP RANGE*

<table>
<thead>
<tr>
<th>Indoor</th>
<th>Outdoor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated up to 450hp</td>
<td>Integrated to 125hp</td>
</tr>
<tr>
<td>Standalone 450hp - 1250hp</td>
<td></td>
</tr>
<tr>
<td>Integrated to 7.5hp</td>
<td>Integrated to 7.5hp</td>
</tr>
<tr>
<td>Integrated to 100hp</td>
<td>Integrated to 100hp</td>
</tr>
<tr>
<td>Integrated to 7.5hp</td>
<td>Integrated to 7.5hp</td>
</tr>
<tr>
<td>Integrated to 40hp</td>
<td>Integrated to 40hp</td>
</tr>
<tr>
<td>Integrated to 7.5hp</td>
<td>Integrated to 7.5hp</td>
</tr>
</tbody>
</table>

* Single phase available to 7.5hp / 5.5kW

OUTDOOR SERIES

Armstrong Design Envelope pumps are available for outdoor applications in Series 4300, 4380, 4302, 4382, 4312 and 4392 up to a maximum of 125hp (90kW).

- Rated for UL Type 4X with Tefc motor standard.
- Epoxy coated electronics to protect against condensation within the controls.
- Stainless steel backplate prevents corrosion between the backplate and the heat sink.
- Equipped with stainless steel overhead weather shield — this protects the LCP keypad from UV rays, prevents the unit from overheating if exposed to the sun, and prevents accumulation of ice on sensitive areas.
View your savings and ROI using real data from your installation. Ask your Armstrong representative.